Fixture Type
Prepared By

STEEL SQUARE STRAIGHT POLES

Features \& Specifications

Pole Shaft

- Straight poles are 4"and 5" square.
- Pole shaft is electro-welded ASTM-A500 Grade C steel tubing with a minimum yield strength of $50,000 \mathrm{psi}$.
- On Tenon Mount steel poles, tenon is 2-3/8" 0.D. high-strength pipe. Tenon is $4-3 / 4$ " in length.

Hand-Hole

- Standard hand-hole location is 12 " above pole base.
- Poles 22 ' and above have a 3 " x 6 " reinforced hand-hole. Shorter poles have a 2" $\times 4$ " non-reinforced hand-hole.

Base

- Pole base is ASTM-A36 hot-rolled steel plate with a minimum yield strength of $36,000 \mathrm{psi}$.
- Two-piece square base cover is optional.

Anchor Bolts

- Poles are furnished with anchor bolts featuring zinc-plated double nuts and washers. Galvanized anchor bolts are optional.
- Anchor bolts conform to ASTM F 1554-07a Grade 55 with a minimum yield strength of $55,000 \mathrm{psi}$.

Ground Lug

- Ground lug is standard.

Duplex Receptacle

- Weatherproof duplex receptacle is optional.

Ground Fault Circuit Interrupter

- Self-testing ground fault circuit interrupter is optional.

Finishes

- Every pole is provided with a 5 -year limited warranty.
- Each shaft is purchased to a stricter straightness tolerance than specified on industry material standards. Shafts with dents, dings, roll marks, or patterns on the exterior surface are rejected. Shafts are stored indoors to prevent corrosion.
- After connecting holes are cut and hand holes and baseplates welded to the shafts, each pole undergoes a thorough shot-peening process, resulting in a near-white surface. This procedure removes all dirt and scale and strengthens the surface of the steel by inducing a compressive residual stress that helps prevent cracking and extend the life of the pole.
- After shot peening, a neutral wash is applied followed by the application of a zirconium treatment that improves powder-coat adhesion and protects from corrosion.
- Next, each pole is coated through electrostatic application of a polyester powder paint in standard bronze or the color approved by the customer. Paint thickness is measured in multiple locations along the pole to ensure specification adherence.
- Finally, the pole is oven baked to form a homogenous, non-porous surface and wrapped for shipment in a woven fabric sleeve to protect the finish during transit.

Product Dimensions

SQT $-{ }^{\text {N }}=2-3 / 8^{\prime \prime}(60 \mathrm{~mm})$ O.D. $\times 4-3 / 4^{\prime \prime}(121 \mathrm{~mm})$ Tenon

Bolt-On Mount 2-Bolt Pattern

Prepared By :	Fixture Type :

STEEL SQUARE STRAIGHT POLES

Features \& Specifications (Cont.)

Determining The Luminaire/Pole Combination For Your Application:

- Select luminaire from luminaire ordering information
- Select bracket configuration if required
- Determine EPA value from luminaire/bracket EPA chart
- Select pole height
- Select MPH to match wind speed in the application area (See windspeed maps).
- Confirm pole EPA equal to or exceeding value from note above
- Consult factory for special wind load requirements and banner brackets

SHIPPING WEIGHTS - Steel Square Poles	
4"(102mm) sq. 11 Ga . is approximately	$7.50 \mathrm{lbs} . \mathrm{ftt}$.
$4^{\prime \prime}(102 \mathrm{~mm})$ sq. 07 Ga . is approximately	$10.00 \mathrm{lbs} . / \mathrm{ft}$.
$5^{n}(127 \mathrm{~mm})$ sq. 11 Ga . is approximately	$9.00 \mathrm{lbs} . \mathrm{ft}$.
$5^{\prime \prime}(127 \mathrm{~mm})$ sq. 07 Ga . is approximately	$12.50 \mathrm{lbs} . / \mathrm{ft}$.
$6^{\prime \prime}(152 \mathrm{~mm})$ sq. 07 Ga . is approximately	$15.40 \mathrm{lbs} . / \mathrm{ft}$.
Anchor Bolts ($3 / 4^{\prime \prime} \times 300^{\prime \prime}$)($19 \mathrm{~mm} \times 762 \mathrm{~mm}$)	$15 \mathrm{lbs} .(7 \mathrm{~kg}) \mathrm{set}$
Anchor Bolts ($\left.1^{\prime \prime} \times 36^{\prime \prime}\right)(25 \mathrm{~mm} \times 914 \mathrm{~mm})$	30 lbs . (14kg)/set

Fixture Configurations

Bolt Circle Designator	B	C	D	J
Bolt Circle	$\begin{gathered} \hline \text { Slotted } \\ 8 \text { 8-11" (203mm-279mm) } \end{gathered}$	$\begin{gathered} \hline \text { Slotted } \\ 9^{\prime \prime-11 " ~(229 m m-279 m m) ~} \end{gathered}$	$\begin{gathered} \hline \text { Slotted } \\ \text { 9"-11" (229mm-279mm) } \end{gathered}$	$\begin{gathered} \text { Slotted } \\ 12 "(305 \mathrm{~mm}) \end{gathered}$
Anchor Bolt Size	$\begin{gathered} 3 / 4^{\prime \prime} \times 30 " \\ (19 \mathrm{~mm} \times 762 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 3 / 4^{\prime \prime} \times 300^{\prime \prime} \\ (19 \mathrm{~mm} \times 762 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 1^{\prime \prime} \times 36^{\prime \prime} \\ (25 \mathrm{~mm} \times 914 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 1 " \times 36^{\prime \prime} \\ (25 \mathrm{~mm} \times 914 \mathrm{~mm}) \end{gathered}$
Anchor Bolt Projection	$\begin{gathered} \hline 3-1 / 4^{\prime \prime} \\ (83 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \hline 3-1 / 4^{\prime \prime} \\ (83 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 4^{4 \prime} \\ (102 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 4^{4 \prime} \\ (102 \mathrm{~mm}) \end{gathered}$
Base Plate Opening for Wireway Entry	$\begin{gathered} \hline 3-5 / 8^{\prime \prime} \\ (92 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \hline 4-3 / 4^{\prime \prime} \\ (121 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \hline 4-5 / 8^{\prime \prime} \\ (117 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \hline 5-5 / 8^{\prime \prime} \\ (143 \mathrm{~mm}) \end{gathered}$
Base Plate Dimensions	10-1/8" sq. x $3 / 4^{\prime \prime}$ thk. (257mm x 19mm)	$10-1 / 8^{\prime \prime}$ sq. $\times 3 / 4^{\prime \prime}$ thk. ($257 \mathrm{~mm} \times 19 \mathrm{~mm}$)	$10-1 / 8^{\prime \prime}$ sq. $\times 1^{\prime \prime}$ thk. (257mm x 25mm)	12" sq. $\times 1-1 / 8^{\prime \prime}$ thk. (305mm x 29mm)

Note: Base plate illustrations may change without notice. Do not use for setting anchor bolts. Consult factory for the appropriate anchor bolt template.

Prepared By

STEEL SQUARE STRAIGHT POLES

Ordering Guide - ARIA, ACCESS, ARCHER, AND AERO

Trpical ordeen exanple: S4-B0-S11G-20-S-BRZ-4

Pole Series	Mounting Method	Material	Height ${ }^{2}$	Mounting Configuration	Pole Finish	Optional Accessories
S4-4" $\times 4$ " Square Straight Pole S5-5" $\times 5$ " Square Straight Pole	BO - Bolt-On Mount ${ }^{1}$ - See pole selection guide for patterns and fixture matches. T - Tenon Mount - See pole selection guide for tenon and fixture/bracket matches.	$\begin{aligned} & \text { S11G-11 Ga. Steel } \\ & \text { (4SQ and } \\ & \text { 5SQ only) } \\ & \text { S07G - } 07 \text { Ga. Steel } \end{aligned}$	12^{\prime} 14^{\prime} 16^{\prime} $17^{\prime} 5^{\prime \prime}$ 20^{\prime} $22^{\prime \prime} 5^{\prime}$ 25 27	S - Single/Parallel D180 - Double D90 - Double DN90 - Double T90 - Triple TN120 - Triple Q90 - Quad QN90 - Quad	BRZ - Bronze BLK - Black WHT - White *Special colors available, consult factory	4" - Base Cover and Galvanized Anchor Bolts 5" - Base Cover and Galvanized Anchor Bolts

FOOTNOTES:

1 - Special colors available, consult factory, standard flat black cap provided
2 - Galvanized archor bolts and base covers are optional accessories
3 - Square come pre-drilled for ATG luminaires
4 - Pole heights will have $+/-1 / 2$ " tolerance
5 - See Flood Lighting Brackets Datasheet for choice of FBO brackets

STEEL SQUARE STRAIGHT POLES

Wind Speed

EPA Information

All ATG poles are guaranteed to meet the EPA requirements listed. ATG is not responsible if a pole order has a lower EPA rating than the indicated wind-loading zone where the pole will be located.
CAUTION: This guarantee does not apply if the pole/bracketfixture combination is used to support any other items such as flags, pennants, or signs, which would add stress to the pole. ATG cannot accept responsibility for harm or damage caused in these situations.

NOTE: Pole calculations include a 1.3 gust factor over steady wind velocity. Example: poles designed to withstand 80 MPH steady wind will withstand gusts to 104 MPH. EPAs are for locations 100 miles away from hurricane ocean lines. Consult ATG for other areas. Note: Hurricane ocean lines are the Atlantic and Gulf of Mexico coastal areas. For applications in Florida or Canada, consult factory.

Note:
1- Poles shorter than these listed here in for each gauge have EPA rating equal to or greater than what is provided in this table. To Confirm EPA ratings on shorter poles, contact ATG.
2- ATG recommends a vibration damper be ordered with this length.
Use ONLY with "Wind Speed Map for ASCE 7-10

POLE ${ }^{1}$	Mtg. Height Length (t)	Wall Thick (ga)	BOLT CIRCLE			EPA								
			Designator	Dia. (in)	Anchor bolt Dia $\{$ in\}	110 MPH	115 MPH	120 MPH	130 MPH	140 MPH	150 MPH	160 MPH	170 MPH	180 MPH
4" $\times 11$-ga $\times 12^{\prime}$	12	11	B	$8^{\prime \prime}$ - 11"	0.75	13.9	12.5	11.3	9.2	7.6	6.3	5.2	4.3	3.6
4 " $\times 11$-gax $14{ }^{\prime}$	14	11	B	8" - 11"	0.75	10.7	9.5	8.5	6.8	5.4	4.4	3.5	2.7	2.1
4 " $\times 11$-ga $\times 16$	16	11	B	$8^{\prime \prime}$-11"	0.75	8.2	7.2	6.4	4.9	3.8	2.9	2.1	1.5	1.0
$4^{\prime \prime} \times 11$-gax $18{ }^{\prime}$	18	11	B	$8{ }^{\prime \prime}-11{ }^{\prime \prime}$	0.75	6.3	5.4	4.7	3.4	2.4	1.6	1.0	0.4	n/a
4" $\times 11$-ga $20{ }^{\prime}$	20	11	B	8"-11"	0.75	4.6	3.9	3.2	2.1	1.2	0.6	n/a	n/a	n/a
4" $\times 11$-gax $22{ }^{\prime}$	22	11	B	8"-11"	0.75	7.6	6.6	5.7	4.2	3.0	2.0	1.2	0.5	n/a
4" $\times 11$-ga $24{ }^{\prime}$	24	11	B	$8{ }^{\prime \prime}-11{ }^{\prime \prime}$	0.75	6.0	5.1	4.3	2.9	1.8	0.9	n/a	n/a	n/a
$4^{\prime \prime} \times 11$-ga $\times 26^{\prime}$	26	11	B	$8{ }^{\prime \prime}-11{ }^{\prime \prime}$	0.75	4.6	3.7	3.0	1.7	0.7	n/a	n/a	n/a	n/a
4" ${ }^{\prime \prime} 7$-ga 14^{\prime}	14	7	B	$8{ }^{\prime \prime}-11^{\prime \prime}$	0.75	18.3	16.4	14.9	12.2	10.2	8.5	7.1	5.9	5.0
4" $\times 7$-gax 16^{\prime}	16	7	B	$8{ }^{\text {" }}$-11"	0.75	14.7	13.2	11.8	9.6	7.8	6.3	5.2	4.2	3.4
4" ${ }^{\prime \prime}$ 7-ga $\times 18^{\prime}$	18	7	B	$8{ }^{\text {" }}$-11"	0.75	11.9	10.5	9.3	7.4	5.9	4.6	3.6	2.8	2.1
4" ${ }^{\prime \prime} 7$-ga $\times 20^{\prime}$	20	7	B	8 " - 11"	0.75	9.6	8.4	7.4	5.7	4.3	3.2	2.3	1.6	0.9
4" $\times 7$-gax $22{ }^{\prime}$	22	7	B	8 " - 11"	0.75	7.7	6.6	5.7	4.2	3.0	2.0	1.2	0.5	n/a
4" ${ }^{\prime \prime} 7$-ga 22^{\prime}	24	7	B	8"-11"	0.75	6.0	5.1	4.3	2.9	1.8	0.9	n/a	n/a	n/a
$4^{\prime \prime} \times 7$-gax $26{ }^{\prime}$	26	7	B	$8{ }^{\prime \prime}-11{ }^{\prime \prime}$	0.75	4.6	3.7	3.0	1.7	0.7	n/a	n/a	n/a	n/a
$4^{\prime \prime} \times 7$-ga $28^{\prime 2}$	28	7	B	$8^{\prime \prime}-11^{\prime \prime}$	0.75	3.3	2.5	1.8	0.7	n/a	n/a	n/a	n/a	n/a
4" $\times 7$-ga $30^{\prime 2}$	30	7	B	$8{ }^{\text {" }}$-11"	0.75	2.2	1.4	0.8	n/a	n/a	n/a	n/a	n/a	n/a
$5 " \times 11$-ga $\times 14^{\prime}$	14	11	C	9"-11"	0.75	17.4	15.7	14.1	11.5	9.3	7.7	6.3	5.2	4.2
5" $\times 11$-ga $\times 16^{\prime}$	16	11	c	9"-11"	0.75	13.8	12.3	10.9	8.7	6.9	5.5	4.3	3.3	2.5
5 " $\times 11$-ga $\times 18{ }^{\prime}$	18	11	C	9"-11"	0.75	10.8	9.6	8.4	6.5	4.9	3.7	2.6	1.8	1.1
5 " $\times 11$-ga $\times 20$	20	11	c	9"-11"	0.75	8.5	7.3	6.3	4.6	3.2	2.1	1.2	0.5	n/a
$5 " \times 11$-ga $\times 22^{\prime}$	22	11	c	$9 \mathrm{~m}-11^{\prime \prime}$	0.75	10.9	9.5	8.3	6.2	4.5	3.2	2.1	1.2	0.5
5 " $\times 11$-ga $\times 24$	24	11	c	9"-11"	0.75	8.8	7.5	6.4	4.5	3.0	1.8	0.8	n/a	n/a
5 " $\times 11$-ga $26{ }^{\prime}$	26	11	C	9"-11"	0.75	6.8	5.7	4.6	3.0	1.6	0.6	n/a	n/a	n/a
$5 " \times 11$-ga $28{ }^{\prime}$	28	11	c	9"-11"	0.75	5.2	4.1	3.2	1.6	0.4	n/a	n/a	n/a	n/a
5 " $\times 11$-ga $\times 30^{\prime}$	30	11	C	9"-11"	0.75	3.6	2.7	1.8	0.4	n/a	n/a	n/a	n/a	n/a
5 " $\times 7$-ga $\times 20$	20	7	D	9"-11"	1.00	21.6	19.3	17.3	14.0	11.3	9.2	7.4	6.0	4.8
5" 7 7-ga $\times 22^{\prime}$	22	7	D	9"-11"	1.00	20.7	18.6	16.6	13.3	10.7	8.5	6.8	5.4	4.2
5" $\times 7$-ga 24^{\prime}	24	7	D	$9 \mathrm{~m}-11^{\prime \prime}$	1.00	17.7	15.6	13.8	10.8	8.5	6.6	5.0	3.7	2.6
5'x 7 -ga $\times 26^{\prime}$	26	7	D	9"-11"	1.00	14.9	13.1	11.4	8.8	6.6	4.9	3.5	2.3	1.3
5" $\times 7$-ga 288^{\prime}	28	7	D	9"-11"	1.00	12.5	10.9	9.4	6.9	4.9	3.4	2.1	1.0	n/a
5" ${ }^{\prime \prime} 7$-ga $\times 30^{\prime}$	30	7	D	9"-11"	1.00	10.3	8.9	7.5	5.2	3.4	2.0	0.8	n/a	n/a
5" $\times 7$-ga 35^{\prime}	35	7	D	9"-11"	1.00	6.0	4.8	3.6	1.8	n/a	n/a	n/a	n/a	n/a
$6^{\prime \prime} \times 7$-ga 24^{\prime}	24	7	J	$12^{\prime \prime}$	1.00	18.6	16.4	14.3	11.2	8.6	6.5	4.8	3.4	2.2
$6^{\prime \prime} \times 7$-ga 26^{\prime}	26	7	J	12	1.00	15.6	13.4	11.7	8.8	6.5	4.6	3.0	1.8	0.7
$6^{\prime \prime} \times 7$-gax 28^{\prime}	28	7	J	12	1.00	12.9	10.9	9.3	6.7	4.6	2.8	1.5	n/a	n/a
$6^{\prime \prime} \times 7$-gax 30^{\prime}	30	7	J	12	1.00	10.4	8.8	7.3	4.8	2.9	1.3	n/a	n/a	n/a
$6^{\prime \prime} \times 7$-ga 32^{\prime}	32	7	J	12	1.00	8.3	6.8	5.5	3.1	1.3	n/a	n/a	n/a	n/a
$6^{\prime \prime} \times 7$-gax 34	34	7	J	121	1.00	6.5	5.0	3.7	1.6	n/a	n/a	n/a	n/a	n/a
$6 " \times 7$-ga 35^{\prime}	35	7	J	12	1.00	5.5	4.2	2.9	0.9	n/a	n/a	n/a	n/a	n/a
6" $\times 7$-ga $\times 39^{\prime}$	39	7	J	12	1.00	2.3	1.0	n/a						

